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The reaction of triorganotin(IV) compound Ph2LSnCl (1), (L = 2,6-(t-BuOCH2)2C6H3), with (Bu3Sn)2O
resulted to the isolation of Ph2LSn(l-OH)Bu3SnCl (2), in which a monomeric triorganotin(IV) hydroxide
Ph2LSnOH intermolecularly coordinates Bu3SnCl moiety. Compound 2 was characterized by combination
of 1H, 13C and 119Sn NMR spectroscopy, ESI/MS, elemental analysis and X-ray diffraction.
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Organotin(IV) oxides and hydroxides are well established as
homogenous catalysts in various transesterification or transcar-
bamoylation processes [1]. Triorganotin(IV) hydroxides R3SnOH
are usually reported as the class of compounds synthesized by
hydrolytic processes of corresponding halides and they can easily
undergo the dehydratation resulting to corresponding distannox-
ane species. The structures of these compounds strongly depend
on the nature of R groups. Triorganotin hydroxides with relatively
small R groups form infinite zig-zag chains, in which R3SnOH moi-
eties are associated via hydroxo bridges [2]. When bulkier groups
are involved, however, R3SnOH compounds form monomeric spe-
cies but only two compounds of this type containing four-coordi-
nated tin atom have previously been structurally characterized
[3,4] (Chart 1A and B).

Recently, the simple preparation of tetraorganodistannoxane
[(L)2Sn(OH)]2O and Sn2 diorganotin(IV) dication [Ph(L0)Sn-(l-
OH)2-Sn(L0)Ph]2+ 2[CB11H12]�, diorganotin hydroxides containing
O,C,O-chelating ligands L (2,6-(t-BuOCH2)2C6H3) and L0 (2,6-
(MeOCH2)2C6H3) [5], has been reported (Chart 1C and D).

To further explore the field of potential use of O,C,O-chelating
ligands in the preparation of organotin hydroxide, we focused on
the synthesis of triorganotin hydroxides containing O,C,O-chelat-
ing ligands. Here we report on the isolation of Ph2LSn(l-OH)
All rights reserved.

2)2C6H3.

).
Bu3SnCl (2), where monomeric triorganotin(IV) hydroxide
Ph2LSnOH intermolecularly coordinates Bu3SnCl.

The compound 2 was prepared by the reaction of triorganotin
compound Ph2LSnCl (1) [6] with (Bu3Sn)2O [7,8] (Scheme 1).

The 119Sn NMR spectrum of 2 in CDCl3 exhibited two signals at
�131.8 and 62.2 ppm indicating the presence of two different tin
atoms in the molecule. While the first one is shifted downfield
compare to starting Ph2LSnCl (�144.2 ppm) [6] and is diagnostic
for pentacoordinated central tin atoms [9], the latter one is shifted
downfield compare to the starting (Bu3Sn)2O (92.7 ppm) [10a]. The
1H NMR spectrum showed the presence of both ligand L (broad sin-
glet at 4.6 ppm for CH2O groups comparable to starting compound
1 d1H(CH2) = 4.6 ppm) and Bu groups in mutual 1:3 integral ratio.
The 13C NMR spectrum of 2 revealed three sets of signals with
tin satellites indicating the presence the three different L, Ph and
Bu groups bonded to the central tin atom. The values of bonding
angles of CPh–Sn–CPh (118�) and CBu–Sn–CBu (115�) calculated from
1J(119Sn, 13CPh(1)) = 705 Hz and 1J(119Sn, 13CBu(1)) = 407 Hz indicate
distorted trigonal bipyramidal configuration at both tin atoms in 2
[9]. Positive mode of ESI/MS spectrum of 2 showed the presence of
intense peak at m/z = 523 assigned to [Ph2LSn]+, fragment of trior-
ganotin(IV) hydroxide Ph2LSnOH. This observation indicates that
the Bu3SnCl moiety is weakly coordinated by the triorganotin(IV)
hydroxide Ph2LSnOH in compound 2. Similar result could be also
determined from 119Sn NMR spectra of 2. The value of d(119Sn)
62.2 ppm shows a considerable upfield shift relative to non-coordi-
nated Bu3SnCl (152 ppm), but is shifted downfield compare to the
values of d(119Sn) found in Bu3SnCl*A complexes [A = py
(+10.6 ppm), dmso (+2.7 ppm), hmpa (�35.1 ppm)] where five
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Scheme 1. Preparation of compound 2.

Chart 1.
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coordinated tin atom was reported [10b]. These experimental data
establish that the Ph2LSnOH moiety coordinates Bu3SnCl by weaker
interaction than the solvent molecules like pyridine or DMSO.

The molecular structure of 2 was determined by single-crystal
X-ray analysis (Fig. 1). Single crystals of 2 were obtained by slow
evaporation of a hexane solution and selected bond lengths, angles
and of 2 and structural parameters of related compounds are given
in Table 1 [11].
Fig. 1. General view (ORTEP) of a molecule showing 40% probability displacement
ellipsoids and the atom-numbering scheme for 2. The hydrogen atoms are omitted
for clarity (expect hydrogen involved in OH group).
The molecular structure of 2 consists of two moieties Ph2LSnOH
and Bu3SnCl that are joined by Sn–(l-OH)–Sn bridge formed by an
intermolecular Sn O coordination. The shapes of coordination
polyhedrons around both central tin atoms can be described as a
distorted trans-trigonal bipyramids, with carbon atoms in equato-
rial positions and electronegative atoms in axial positions. The
Sn(1) atom of Ph2LSnOH fragment is occupied by three carbon
atoms C(1), C(7) and C(13) (involving ligand L and both Ph groups)
forming equatorial plane and two oxygen atoms O(3) and O(1)
(involving ligand L and hydroxyl group) in axial position with
bonding angle O(3)–Sn(1)–O(1) = 176.43(12)�. The value of bond
length Sn(1)–O(3) (2.624(3) Å) indicates the presence of medium
strong Sn–O intramolecular interaction in Ph2LSnOH, while the
second oxygen atom O(2) of ligand L is out of the primary tin coor-
dination sphere [Sn(1)–O(2) = 3.218(3) Å]. This oxygen atom O(2)
and the hydrogen atom H(1) of the hydroxy group (O(1)) are,
however, involved in the hydrogen-bonding interaction
[O(1)� � �O(2) 2.693(5) Å, O(1)–H(1)� � �O(2) 175.68(10)�]. The bond
length Sn(1)–O(1) (2.068(3) Å) is comparable to the Rcov (Sn,
O) = 2.066 Å [12] and clearly demonstrates the presence of cova-
lent bond Sn–O defining thus the presence of monomeric triorga-
notin hydroxide Ph2LSnOH. The longer Sn(2)–O(1) bond
(2.342(4) Å) suggests that hydroxy group of Ph2LSnOH is involved
in coordinate dative interaction with Bu3SnCl. The central tin atom
Sn(2) of Bu3SnCl, due to this interaction, is also in the centre of dis-
torted trigonal bipyramid, where equatorial plane is formed by
three carbons atoms (C(29), C(33), C(37)) involving Bu groups
and axial positions are occupied by oxygen atom O(1) and chloride
Cl(1) [O(1)–Sn(2)–Cl(1) = 175.68(10)� and Sn(2)–Cl(1) = 2.5481
(16) Å)]. While simple triorganotin(IV) hydroxides Ph3SnOH or
Et3SnOH contain two nearly same Sn O dative bonds (see Table
1), similar structural motif with one covalent Sn–O (2.078 Å) and
one dative Sn O bond (2.265 Å) was found in [Me3Sn(l-OH)Sn-
Me3(l-OH)SnMe3]+Br� (see Table 1) [13]. This comparison of bond
lengths of Sn O dative bonds in discussed compounds clearly
shows that compound 2 consists of two weakly coordinated parts
Ph2LSnOH and Bu3SnCl bonded by medium strength Sn O inter-
molecular coordination. In contrast, related triorganotin com-
pound {[(Me2LCNSn)2(l-OH)]+ I�} ðwhere LCN is Me2NCH2C6H�4 Þ,
having two five coordinated tin atoms [14] and {[(Me3Sn)2(l-
OH)]+Cl�}, compound with two four-coordinated trimethyl tin
atoms [15] contain two nearly same Sn O dative bonds (range
of 2.124–2.146 Å) similarly to simple triorganotin(IV) hydroxides.

In summary we have reported on the preparation of Ph2LSn(l-
OH)Bu3SnCl (2) consisting of two weakly coordinated moieties of
monomeric triorganotin(IV) hydroxide Ph2LSnOH and Bu3SnCl
bonded by Sn O dative bond. Up to date prepared and structur-
ally characterized compounds R3SnOH, which adopt a structure
consisting of discrete molecules, are highly crowded triorganotin



Table 1
Selected bond length (Å) and angles (�) for R3SnOH, [Me3Sn(l-OH)SnMe3(l-OH)SnMe3]+Br� and 2.

R3SnOH Sn–O O ? Sn O–Sn–O Sn–O–Sn Ref.

Ph2LSn(l-OH)Bu3SnCl (2) 2.068 2.342 – 149.6 This work
Et3SnOH 2.156 2.244 177.9 145.4 [2a]
Ph3SnOH 2.197 2.255 177.6 137.8 [2b]
[Me3Sn(l-OH)SnMe3(l-OH)SnMe3]+Br� 2.078 2.265 178.8 134.4 [13]

For table of contents use only. The reaction of triorganotin(IV) compound Ph2LSnCl (1), (L = 2,6-(t-BuOCH2)2C6H3), with (Bu3Sn)2O resulted to the isolation of Ph2LSn(l-
OH)Bu3SnCl (2) containing monomeric triorganotin(IV) hydroxide Ph2LSnOH that intermolecularly coordinates Bu3SnCl moiety. Compound 2 was characterized by the help of
1H, 13C and 119Sn NMR spectroscopy, ESI/MS, elemental analysis and X-ray diffraction.
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hydroxides. Other organotin hydroxides form hydrogen-bonded
dimmers [16] or polymers containing five-coordinate tin [2b].
The synthesis of 2 is thus another example of that the use of
Y,C,Y-chelating ligands can be an alternative concept for the bulky
substituents substitution.
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Appendix A. Supplementary material

CCDC 695719 contains the supplementary crystallographic data
for 2. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/da-
ta_request/cif. Supplementary data associated with this article
can be found, in the online version, at doi:10.1016/
j.jorganchem.2009.01.009.
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